

2017 Annual Drinking Water Quality Report

Laughlin Air Force Base Water System

INTRODUCTION

This report is a summary of the quality of water Laughlin Air Force Base provides its customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become knowledgeable about what is in your drinking water.

SOURCE OF DRINKING WATER

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

WHERE DO WE GET OUR DRINKING WATER

Our drinking water is purchased from the City of Del Rio. The City of Del Rio obtains the water from the San Felipe Springs, a surface water source. The Texas Commission on Environmental Quality (TCEQ) has completed a Source Water Assessment of the water source. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The City of Del Rio received the assessment report. For more information on source water assessments and protection efforts at our system contact Bioenvironmental Engineering Flight, 47 MDOS/SGOJ, at (830) 298-6859.

ALL DRINKING WATER MAY CONTAIN CONTAMINANTS

When drinking water meets federal standards, there may not be any health-based benefits to purchasing bottled water or point of use devices.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

SECONDARY CONSTITUENTS

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the state of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document, but they may greatly affect the appearance and taste of your water.

HEALTH INFORMATION ABOUT LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

SPECIAL NOTICE

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 800- 426-4791.

HOW TO READ YOUR WATER QUALITY REPORT

The year or years tests were conducted.
Contaminants (2007-2013)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements LAFB must follow.

The highest amount of a contaminant EPA allows in drinking water.

Below this level, a contaminant has no known or expected health risks.

How a contaminant ends up in LAFB drinking water.

Substance	Action Level	Concentration Range Found	Avg. Conc. Found	MCL	MCLG	Potential Source
Substance 1 (ppm)		0.024-0.112	0.05	2	2	Discharge from drilling wastes; discharge from metal refineries; erosion of natural deposits
Substance 2 (ppb)		0-8.4	2.4	100	100	Erosion of natural deposits; discharge from fertilizer and aluminum factories

Parts per billion – one ppb equals to one teaspoon in 1,302,000 gallons.

Parts per million – one ppm equals to one teaspoon in 1,302 gallons.

The amount from lowest to highest of a contaminant detected in LAFB drinking water.

The average amount of a contaminant detected in LAFB drinking water.

This describes some of the ways contaminants enter drinking water; wording is provided by EPA

2017 Annual Drinking Water Quality Report

Laughlin Air Force Base Water System

COLIFORM BACTERIA

Constituent	MCLG	Total Coliform MCL	Highest Number of Positive	Fecal Coliform or E.Coli MCL	Total Number of Positive E.Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
Coliform Bacteria	0	No more than 1 positive sample per month	0	0	0	No	Naturally present in the environment

MAXIMUM RESIDUAL DISINFECTANT LEVEL

Disinfectant	Test Year	Average Concentration Found	Minimum Level	Maximum Level	MRDL	MRDLG	Units	Likely Source of Contamination
Chlorine Residual, Free	2017	1.15	0.22	1.72	4	4	ppm	Disinfectant used to control microbes

LEAD AND COPPER

Constituent	Date Sampled	MCLG	Action Level (AL)	90th Percentile	Number of Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2016	1.3	1.3	0.2	0	ppm	No	Corrosion of household plumbing system; erosion of natural deposits; leaching from wood preservatives
Lead	2016	0	15	2.9	0	ppb	No	Corrosion of household plumbing systems; erosion of natural deposits

DISINFECTANTS AND DISINFECTION BY-PRODUCTS

Constituent	Collection Date	Highest Locational Running Annual Average	Concentration Range Found	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Trihalomethanes (TTHMs)	2017	42	16.8 – 21.7	N/A	80	ppb	No	By-product of drinking water disinfection
Total Haloacetic Acids (HAAs)	2017	16	3.4 – 5.9	N/A	60	ppb	No	By-product of drinking water disinfection

INORGANIC CONTAMINANTS

Constituent	Collection Date	Highest Level Detected	Concentration Range Found	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	2017	<0.002	<0.002	0	10	ppm	No	Erosion of natural deposits; runoff from orchids; runoff from glass and electronics production wastes
Barium	2017	0.0691	0.0691 – 0.0691	2	2	ppm	No	Discharge from drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride	2017	0.54	0.30 – 0.54	4	4	ppm	No	Erosion of natural deposits; discharge from fertilizer and aluminum factories; additive which promotes strong teeth
Nitrate	2017	2	1.65 – 1.65	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits

RADIOACTIVE CONTAMINANTS

Constituent	Collection Date	Highest Level Detected	Concentration Range Found	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	2017	1.5	1.5 – 1.5	0	5	pCi/L	No	Erosion of natural deposits

VOLATILE ORGANIC CONTAMINANTS

Constituent	Collection Date	Highest Level Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Ethylbenzene	2017	<0.5	700	700	ppb	No	Discharge from factories and dry cleaners
Tetrachloroethylene	2017	<0.5	0	5	ppb	No	Discharge from factories and dry cleaners
Xylenes, Total	2017	<0.05	10,000	10,000	ppb	No	Discharge from petroleum and chemical factories

**Laughlin AFB, TX
Water System
PWS ID Number: TX 2330006**

Questions About Your Water Quality Report?

If you would like more information or a copy of this Water Quality Report, Call:

**Commercial (830) 298-6859
DSN 732-6859**

Call the CE 24 Hour Help Desk for:

- Report Leaks
- Main breaks
- Sewer back-ups

Commercial (830) 298-5488

For more information regarding the Bioenvironmental Engineering Flight, please visit our SharePoint Site:

https://laughlin.eis.aetc.af.mil/47MDG/47MDOS/Bioenvironmental_Engineering/default.aspx

For more information about water systems go to Texas Drinking Water Watch:

<http://dww2.tceq.texas.gov/DWW/>

Bioenvironmental Engineering

47 MDOS/SGOJ
590 Mitchell Blvd.
Bldg. 375
Laughlin AFB, TX 78843

Hours of Operation:

Monday – Thursday: 0730-1630

Friday: 0830 – 1630